94 research outputs found

    Genome-wide association analyses of North American Rheumatoid Arthritis Consortium and Framingham Heart Study data utilizing genome-wide linkage results

    Get PDF
    The power of genome-wide association studies can be improved by incorporating information from previous study findings, for example, results of genome-wide linkage analyses. Weighted false-discovery rate (FDR) control can incorporate genome-wide linkage scan results into the analysis of genome-wide association data by assigning single-nucleotide polymorphism (SNP) specific weights. Stratified FDR control can also be applied by stratifying the SNPs into high and low linkage strata. We applied these two FDR control methods to the data of North American Rheumatoid Arthritis Consortium (NARAC) study and the Framingham Heart Study (FHS), combining both association and linkage analysis results. For the NARAC study, we used linkage results from a previous genome scan of rheumatoid arthritis (RA) phenotype. For the FHS study, we obtained genome-wide linkage scores from the same 550 k SNP data used for the association analyses of three lipids phenotypes (HDL, LDL, TG). We confirmed some genes previously reported for association with RA and lipid phenotypes. Stratified and weighted FDR methods appear to give improved ranks to some of the replicated SNPs for the RA data, suggesting linkage scan results could provide useful information to improve genome-wide association studies

    Region-based analysis in genome-wide association study of Framingham Heart Study blood lipid phenotypes

    Get PDF
    Due to the high-dimensionality of single-nucleotide polymorphism (SNP) data, region-based methods are an attractive approach to the identification of genetic variation associated with a certain phenotype. A common approach to defining regions is to identify the most significant SNPs from a single-SNP association analysis, and then use a gene database to obtain a list of genes proximal to the identified SNPs. Alternatively, regions may be defined statistically, via a scan statistic. After categorizing SNPs as significant or not (based on the single-SNP association p-values), a scan statistic is useful to identify regions that contain more significant SNPs than expected by chance. Important features of this method are that regions are defined statistically, so that there is no dependence on a gene database, and both gene and inter-gene regions can be detected. In the analysis of blood-lipid phenotypes from the Framingham Heart Study (FHS), we compared statistically defined regions with those formed from the top single SNP tests. Although we missed a number of single SNPs, we also identified many additional regions not found as SNP-database regions and avoided issues related to region definition. In addition, analyses of candidate genes for high-density lipoprotein, low-density lipoprotein, and triglyceride levels suggested that associations detected with region-based statistics are also found using the scan statistic approach

    A case report and genetic characterization of a massive acinic cell carcinoma of the parotid with delayed distant metastases.

    Get PDF
    We describe the presentation, management, and clinical outcome of a massive acinic cell carcinoma of the parotid gland. The primary tumor and blood underwent exome sequencing which revealed deletions in CDKN2A as well as PPP1R13B, which induces p53. A damaging nonsynonymous mutation was noted in EP300, a histone acetylase which plays a role in cellular proliferation. This study provides the first insights into the genetic underpinnings of this cancer. Future large-scale efforts will be necessary to define the mutational landscape of salivary gland malignancies to identify therapeutic targets and biomarkers of treatment failure

    Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure

    Get PDF
    Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure

    BR-squared: a practical solution to the winner’s curse in genome-wide scans

    Get PDF
    The detrimental effects of the winner’s curse, including overestimation of the genetic effects of associated variants and underestimation of sufficient sample sizes for replication studies are well-recognized in genome-wide association studies (GWAS). These effects can be expected to worsen as the field moves from GWAS into whole genome sequencing. To date, few studies have reported statistical adjustments to the naive estimates, due to the lack of suitable statistical methods and computational tools. We have developed an efficient genome-wide non-parametric method that explicitly accounts for the threshold, ranking, and allele frequency effects in whole genome scans. Here, we implement the method to provide bias-reduced estimates via bootstrap re-sampling (BR-squared) for association studies of both disease status and quantitative traits, and we report the results of applying BR-squared to GWAS of psoriasis and HbA1c. We observed over 50% reduction in the genetic effect size estimation for many associated SNPs. This translates into a greater than fourfold increase in sample size requirements for successful replication studies, which in part explains some of the apparent failures in replicating the original signals. Our analysis suggests that adjusting for the winner’s curse is critical for interpreting findings from whole genome scans and planning replication and meta-GWAS studies, as well as in attempts to translate findings into the clinical setting
    corecore